login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116435
Number of n-almost primes less than or equal to n^n.
2
0, 1, 5, 34, 269, 2613, 28893, 359110, 4934952, 74342563, 1217389949, 21533211312, 409230368646, 8318041706593
OFFSET
1,3
COMMENTS
Consider the array T(r,c) where is the number of c-almost primes less than or equal to r^c. This is the diagonal T(r,r).
EXAMPLE
a(3)=5 because there are five 3-almost primes <= 27, 8,12,18,20&27.
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Do[ Print@ AlmostPrimePi[n, n^n], {n, 13}]
PROG
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A116435(n):
def almostprimepi(n, k):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
return almostprimepi(n**n, n) # Chai Wah Wu, Sep 01 2024
CROSSREFS
Sequence in context: A365183 A371391 A058248 * A292877 A257887 A090367
KEYWORD
hard,more,nonn
AUTHOR
EXTENSIONS
a(13)-a(14) from Donovan Johnson, Oct 05 2010
Definition of T(r,c) corrected by R. J. Mathar, Jun 20 2021
STATUS
approved