login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A371391
Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+2*x)^2 ).
1
1, 5, 34, 269, 2326, 21314, 203428, 2000957, 20142862, 206524790, 2149261852, 22644243218, 241061343004, 2589022298084, 28019201644744, 305254481274269, 3345077342003134, 36846738570089774, 407754101877613804, 4531049315843043974, 50538820796852529364
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(2*(n+1),k) * binomial(2*n-k,n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+2*x)^2)/x)
(PARI) a(n) = sum(k=0, n, 2^k*binomial(2*(n+1), k)*binomial(2*n-k, n-k))/(n+1);
CROSSREFS
Sequence in context: A365218 A243659 A365183 * A058248 A116435 A292877
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 21 2024
STATUS
approved