login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371390
Numbers k such that prime(k), prime(k+1), prime(k+2), prime(k+3) and prime(k+4) all have the same last digit.
2
11582, 17385, 19317, 20579, 22931, 42098, 51895, 52252, 55259, 60393, 62192, 62193, 62680, 64050, 65324, 71483, 76391, 76773, 76805, 77052, 81139, 86711, 95661, 100208, 102032, 113646, 113892, 113954, 115251, 124227, 125218, 125586, 144165, 144299, 147619, 147620
OFFSET
1,1
EXAMPLE
11582 is a term because prime(11582) = 123229, prime(11583) = 123239, prime(11584) = 123259, prime(11585) = 123269 with the same last digit 9.
MAPLE
nn:=15*10^4:d:=array(1..5):
for n from 1 to nn do:
for k from 1 to 5 do:
d[k]:=irem(ithprime(n+k-1), 10):
od:
if d[1]=d[2] and d[1]=d[3] and
d[1]=d[4] and d[1]=d[5]
then
printf(`%d, `, n):
else
fi:
od:
PROG
(PARI) \\ See PARI link
(Python)
from itertools import count, islice
from sympy import nextprime
def A371390_gen(): # generator of terms
xlist, p = [2, 3, 5, 7, 1], 11
for k in count(1):
if len(set(xlist)) == 1:
yield k
p = nextprime(p)
xlist = xlist[1:]+[p%10]
A371390_list = list(islice(A371390_gen(), 10)) # Chai Wah Wu, Apr 13 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Mar 20 2024
STATUS
approved