login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257887
Number of proper diagonals of the n-dimensional associahedron (i.e., diagonals that are not included in lower dimension faces).
5
1, 5, 34, 273, 2436, 23391, 237090, 2505228, 27360612, 306956091, 3521389998, 41164654020, 489017000736, 5890746106977, 71829149873286, 885296835708778, 11015753148497480, 138241674405266782, 1748203287998505712, 22261537862360050040, 285268915333307553016
OFFSET
1,2
COMMENTS
a(n) is also the number of pairs of triangulations of an (n+3)-gon that have no diagonals in common.
REFERENCES
D. Huguet and D. Tamari, La structure polyedrale des complexes de parenthesages, J. Combinatorics, Information & System Sciences 3 (1978) pages 69-81
LINKS
Alexander E. Black, Kevin Liu, Alex Mcdonough, Garrett Nelson, Michael C. Wigal, Mei Yin, and Youngho Yoo, Sampling planar tanglegrams and pairs of disjoint triangulations, arXiv:2304.05318 [math.CO], 2023.
Dimbinaina Ralaivaosaona, Jean Bernoulli Ravelomanana, Stephan Wagner, Counting Planar Tanglegrams, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Article 32.
MATHEMATICA
nmax = 23; A = Sum[CatalanNumber[n]^2*x^(n+1), {n, 0, nmax}]+O[x]^(nmax+1); B = InverseSeries[A, x] // Normal; Drop[CoefficientList[(-B+x-x^2)/2, x], 3] (* Jean-François Alcover, Feb 20 2017, after F. Chapoton *)
PROG
(PARI) seq(n)={Vec(x - x^2 - serreverse(sum(k=0, n+1, (binomial(2*k, k)/(k+1))^2*x^(k+1)) + O(x^(n+3))))/2} \\ Andrew Howroyd, Mar 18 2018
(Sage)
x = PowerSeriesRing(QQ, 'x').gen()
N = 30
A = sum(catalan_number(n) ** 2 * x ** (n + 1) for n in range(N)).O(N + 1)
B = A.reverse()
list((-B+x-x**2)/2) # F. Chapoton, Feb 17 2017
CROSSREFS
Sequence in context: A058248 A116435 A292877 * A090367 A189488 A111557
KEYWORD
nonn
AUTHOR
Alon Regev, May 11 2015
EXTENSIONS
More terms from F. Chapoton, Feb 17 2017
STATUS
approved