login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257888
Number of nonintersecting (or self-avoiding) rook paths of length 2n+2 joining opposite corners of an n X n grid.
2
4, 36, 224, 1200, 5940, 28028, 128128, 572832, 2519400, 10943240, 47070144, 200880160, 851809140, 3592795500, 15085939200, 63102895680, 263083395960, 1093683448440, 4535210472000, 18764563053600, 77485731403080, 319402222692696, 1314511549519104
OFFSET
3,1
LINKS
FORMULA
a(n) = 2*(n-1)*binomial(2*n-2, n-3).
a(n) = A114593(n^2).
a(n) = 4*A002055(n+3). - Alois P. Heinz, May 21 2015
From Benedict W. J. Irwin, Jul 13 2016: (Start)
G.f.: 2*(s-1+x*(7-5*s+2*x*(2*s-6+x)))/(s^3x^2), where s=sqrt(1-4*x).
E.g.f: 2*E^(2*x)*x*(BesselI(1,2*x)+2*BesselI(2,2*x)+BesselI(3,2*x)).
(End)
MATHEMATICA
a[n_] := 2 Sum[Sum[
Binomial[j + k, k]*Binomial[2 n - k - j - 1, n - k + 1], {k,
n}], {j, 0, n - 2}]
CoefficientList[Series[(2(-1+Sqrt[1-4x]+x(7-5Sqrt[1-4x] +2x(-6+2Sqrt[ 1-4x] +x))))/ ((1-4x)^(3/2)x^2), {x, 0, 20}], x] (* Benedict W. J. Irwin, Jul 13 2016 *)
PROG
(PARI) a(n) = 2*n*binomial(2*n, n-2) \\ Charles R Greathouse IV, May 21 2015
CROSSREFS
Sequence in context: A291643 A054773 A074434 * A197424 A306094 A018217
KEYWORD
nonn,walk
AUTHOR
Theodore M. Mishura, May 12 2015
EXTENSIONS
Terms a(22) and beyond from Andrew Howroyd, Nov 05 2019
STATUS
approved