login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257891
Numbers that are products of at least three consecutive primes.
2
30, 105, 210, 385, 1001, 1155, 2310, 2431, 4199, 5005, 7429, 12673, 15015, 17017, 20677, 30030, 33263, 46189, 47027, 65231, 82861, 85085, 96577, 107113, 146969, 190747, 215441, 241133, 255255, 290177, 323323, 347261, 392863, 409457, 478661, 510510, 583573
OFFSET
1,1
LINKS
EXAMPLE
a(5) = 1001 = 7 * 11 * 13;
a(6) = 1155 = 3 * 5 * 7 * 11;
a(7) = 2310 = 2 * 3 * 5 * 7 * 11;
a(8) = 2431 = 11 * 13 * 17.
MATHEMATICA
Select[Module[{nn=1000}, Flatten[Table[Times@@@Partition[Prime[Range[nn]], d, 1], {d, 3, 7}]]]//Union, #<10^7&] (* Harvey P. Dale, Aug 04 2024 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a257891 n = a257891_list !! (n-1)
a257891_list = f $ singleton (30, 2, 5) where
f s = y : f (insert (w, p, q') $ insert (w `div` p, a151800 p, q') s')
where w = y * q'; q' = a151800 q
((y, p, q), s') = deleteFindMin s
CROSSREFS
Cf. A151800, A097889, A000977, A046301 (subsequence).
Sequence in context: A101056 A316362 A081370 * A158445 A046301 A193873
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 12 2015
STATUS
approved