login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116082
a(n) = C(n,7) + C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).
2
0, 1, 3, 7, 15, 31, 63, 127, 254, 501, 967, 1815, 3301, 5811, 9907, 16383, 26332, 41225, 63003, 94183, 137979, 198439, 280599, 390655, 536154, 726205, 971711, 1285623, 1683217, 2182395, 2804011, 3572223, 4514872, 5663889, 7055731, 8731847
OFFSET
0,3
COMMENTS
Number of compositions with at most three parts distinct from 1 and with a sum at most n. - Beimar Naranjo, Mar 12 2024
LINKS
Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. See Table 2 on page 370. [Parthasarathy Nambi, Jun 18 2009]
FORMULA
a(n) = A000580(n) + A000579(n) + A000389(n) + A000332(n) + A000292(n) + A000217(n) + n.
a(n) = A000580(n) + A115567(n).
a(n) = n*(n^6 - 14*n^5 + 112*n^4 - 350*n^3 + 1099*n^2 + 364*n + 3828)/5040. - Emeric Deutsch, Apr 14 2006
G.f.: x*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)/(1-x)^8. - R. J. Mathar, Jun 20 2011
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), with a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(4)=15, a(5)=31, a(6)=63, a(7)=127. - Harvey P. Dale, Aug 05 2011
MAPLE
a:=n->n*(n^6-14*n^5+112*n^4-350*n^3+1099*n^2+364*n+3828)/5040: seq(a(n), n=0..35); # Emeric Deutsch, Apr 14 2006
seq(sum(binomial(n, k), k=1..7), n=0..35); # Zerinvary Lajos, Dec 14 2007
MATHEMATICA
Table[Total[Binomial[n, Range[7]]], {n, 0, 40}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {0, 1, 3, 7, 15, 31, 63, 127}, 41](* Harvey P. Dale, Aug 05 2011 *)
PROG
(Magma) [n*(n^6-14*n^5+112*n^4-350*n^3+1099*n^2+364*n+3828)/5040: n in [0..40]]; // Vincenzo Librandi, Jun 21 2011
(PARI) for(n=0, 30, print1(n*(n^6 -14*n^5 +112*n^4 -350*n^3 +1099*n^2 +364*n +3828)/5040, ", ")) \\ G. C. Greubel, Nov 25 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 13 2006
STATUS
approved