login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115991 Number triangle T(n,k) = Sum_{j=0..n} C(n-k,j-k)*C(j,n-j)*2^(n-j). 2
1, 1, 1, 5, 3, 1, 13, 9, 5, 1, 49, 31, 17, 7, 1, 161, 105, 61, 29, 9, 1, 581, 371, 217, 111, 45, 11, 1, 2045, 1313, 781, 417, 189, 65, 13, 1, 7393, 4719, 2825, 1551, 753, 303, 89, 15, 1, 26689, 17041, 10277, 5757, 2921, 1289, 461, 117, 17, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
First column is A084601 with e.g.f. exp(x) Bessel_I(0,2*sqrt(2)x). Row sums are A098518(n+1) with e.g.f. dif(exp(x) Bessel_I(1,2*sqrt(2)x)/sqrt(2)).
Riordan array (1/sqrt(1-2*x-7*x^2), (1+x-sqrt(1-2*x-7*x^2))/2).
LINKS
EXAMPLE
Triangle begins as:
1;
1, 1;
5, 3, 1;
13, 9, 5, 1;
49, 31, 17, 7, 1;
161, 105, 61, 29, 9, 1;
581, 371, 217, 111, 45, 11, 1;
MAPLE
A115991 := proc(n, k)
add(binomial(n-k, j-k)*binomial(j, n-j)*2^(n-j), j=0..n) ;
end proc:
seq(seq(A115991(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Jun 25 2023
MATHEMATICA
Table[Sum[Binomial[n-k, j-k]*Binomial[j, n-j]*2^(n-j), {j, 0, n}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 09 2019 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j)*2^(n-j))}; \\ G. C. Greubel, May 09 2019
(Magma) [[(&+[Binomial(n-k, j-k)*Binomial(j, n-j)*2^(n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
(Sage) [[sum(binomial(n-k, j-k)*binomial(j, n-j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)*2^(n-j)) ))); # G. C. Greubel, May 09 2019
CROSSREFS
Cf. A084601 (k=0), A098518.
Sequence in context: A229958 A157891 A173644 * A352136 A143410 A114344
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 10 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 17:15 EST 2023. Contains 367693 sequences. (Running on oeis4.)