login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115990 Riordan array (1/sqrt(1-2*x-3*x^2), ((1-2*x-3*x^2)/(2*(1-3*x)) - sqrt(1-2*x-3*x^2)/2). 4
1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 19, 13, 8, 4, 1, 51, 35, 22, 12, 5, 1, 141, 96, 61, 35, 17, 6, 1, 393, 267, 171, 101, 53, 23, 7, 1, 1107, 750, 483, 291, 160, 77, 30, 8, 1, 3139, 2123, 1373, 839, 476, 244, 108, 38, 9, 1, 8953, 6046, 3923, 2423, 1406, 752, 360, 147, 47, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
First column is central trinomial coefficients A002426. Second column is number of directed animals of size n+1, A005773(n+1). Row sums are A005717 (number of horizontal steps in all Motzkin paths of length n). First column has e.g.f. exp(x) I_0(2x). Row sums have e.g.f. dif(exp(x) I_1(2x),x).
Riordan array (1/sqrt(1-2*x-3*x^2), (1+x-sqrt(1-2*x-3*x^2))/2).
LINKS
FORMULA
Number triangle T(n,k) = Sum_{j=0..n} C(n-k,j-k)*C(j,n-j).
EXAMPLE
Triangle begins
1;
1, 1;
3, 2, 1;
7, 5, 3, 1;
19, 13, 8, 4, 1;
51, 35, 22, 12, 5, 1;
141, 96, 61, 35, 17, 6, 1;
MAPLE
A115990 := proc(n, k)
add(binomial(n-k, j-k)*binomial(j, n-j), j=0..n) ;
end proc:
seq(seq(A115990(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Jun 25 2023
MATHEMATICA
Table[Sum[ Binomial[n-k, j-k]*Binomial[j, n-j], {j, 0, n}], {n, 0, 10}, {k, 0, n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j))}; \\ G. C. Greubel, May 09 2019
(Magma) [[(&+[Binomial(n-k, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
(Sage) [[sum(binomial(n-k, j-k)*binomial(j, n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)) ))); # G. C. Greubel, May 09 2019
CROSSREFS
Cf. A115991, A005773 (k=1), A025566 (k=2), A035045 (k=3), A152948 (diag. n=k+2), .
Sequence in context: A364855 A105531 A129689 * A350571 A277919 A094531
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 10 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 14:52 EST 2023. Contains 367727 sequences. (Running on oeis4.)