login
A350571
Triangular array read by rows. T(n,k) is the number of unlabeled partial functions on [n] with exactly k undefined points, n>=0, 0<=k<=n.
0
1, 1, 1, 3, 2, 1, 7, 6, 2, 1, 19, 16, 7, 2, 1, 47, 45, 19, 7, 2, 1, 130, 121, 57, 20, 7, 2, 1, 343, 338, 158, 60, 20, 7, 2, 1, 951, 929, 457, 170, 61, 20, 7, 2, 1, 2615, 2598, 1286, 498, 173, 61, 20, 7, 2, 1, 7318, 7261, 3678, 1421, 510, 174, 61, 20, 7, 2, 1
OFFSET
0,4
COMMENTS
It appears that the columns converge to A116950.
REFERENCES
O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009.
FORMULA
G.f.: Product_{i>=1} 1/(1-y*x^i)^A000081(i)*Product_{i>=1} 1/(1-x^i)^A002861(i).
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
3, 2, 1;
7, 6, 2, 1;
19, 16, 7, 2, 1;
47, 45, 19, 7, 2, 1;
130, 121, 57, 20, 7, 2, 1;
343, 338, 158, 60, 20, 7, 2, 1;
951, 929, 457, 170, 61, 20, 7, 2, 1;
...
MATHEMATICA
nn = 10; A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt",
"Table"], {_, _}][[;; nn, 2]];
A000081 = Drop[Cases[ Import["https://oeis.org/A000081/b000081.txt",
"Table"], {_, _}][[;; nn + 1, 2]], 1];
Map[Select[#, # > 0 &] &, CoefficientList[Series[ Product[1/(1 - y x^i)^A000081[[i]], {i, 1, nn}] Product[1/(1 - x^i)^A002861[[i]], {i, 1, nn}], {x, 0, nn}], {x, y}]] // Grid
CROSSREFS
Cf. A126285 (row sums), A001372 (column k=0), A000081, A002861.
Cf. A116950.
Sequence in context: A369041 A129689 A115990 * A277919 A094531 A274293
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 06 2022
STATUS
approved