login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115881
a(n) is the largest positive y satisfying the Diophantine equation x^2=y(y+n). a(n)=0 if there are no solutions.
4
0, 0, 1, 0, 4, 2, 9, 1, 16, 8, 25, 4, 36, 18, 49, 9, 64, 32, 81, 16, 100, 50, 121, 25, 144, 72, 169, 36, 196, 98, 225, 49, 256, 128, 289, 64, 324, 162, 361, 81, 400, 200, 441, 100, 484, 242, 529, 121, 576, 288, 625, 144, 676, 338, 729, 169, 784, 392, 841, 196
OFFSET
1,5
COMMENTS
The corresponding least y is given by A067721(n).
LINKS
FORMULA
Empirical g.f.: -x^3*(x^9+x^8+2*x^7+4*x^6+x^5+6*x^4+2*x^3+4*x^2+1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, Jun 26 2014
From empirical g.f.: a(n) = 1/2 - n/2 + 11*n^2/64 + (1/4 - 1/32*n^2) * (2*floor(n/4) + 2*floor((n+1)/4) - n + 1) + (1/4 - 5/64*n^2)*(-1)^n. - Vaclav Kotesovec, Jun 26 2014
From Chai Wah Wu, Aug 21 2024: (Start)
a(4*j) = j^2 - 2*j + 1,
a(4*j+1) = 4*j^2,
a(4*j+2) = 2*j^2,
a(4*j+3) = 4*j^2+4*j+1 (see A115880).
(End)
EXAMPLE
a(15)=49, since the solutions (x,y) to x^2=y(y+15) are (4,1), (10,5), (18, 12) and (56, 49). The largest y is 49, from (x,y)=(56,49).
MATHEMATICA
Table[Max[y/.Solve[{x^2==y*(y+n), y>0}, {x, y}, Integers]], {n, 1, 100}]/.y->0 (* Vaclav Kotesovec, Jun 26 2014 *)
PROG
(Python)
def A115881(n):
a, b = divmod(n, 4)
return ((c:=a**2)-(a<<1)+1, (d:=c<<2), c<<1, d+(a<<2)+1)[b] # Chai Wah Wu, Aug 21 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 02 2006
STATUS
approved