|
|
A180434
|
|
Decimal expansion of constant (2 - Pi/2).
|
|
11
|
|
|
4, 2, 9, 2, 0, 3, 6, 7, 3, 2, 0, 5, 1, 0, 3, 3, 8, 0, 7, 6, 8, 6, 7, 8, 3, 0, 8, 3, 6, 0, 2, 4, 8, 5, 5, 7, 9, 0, 1, 4, 1, 5, 3, 0, 0, 3, 1, 2, 4, 4, 7, 0, 8, 9, 5, 1, 2, 5, 2, 7, 7, 0, 3, 8, 4, 6, 0, 9, 1, 7, 9, 6, 8, 5, 6, 8, 9, 5, 5, 0, 0, 6, 8, 5, 9, 8, 2, 5, 8, 7, 3, 2, 8, 9, 4, 1, 4, 6, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
(2-Pi/2)*a^2 is the area of the loop of the right strophoid (also called the Newton strophoid) whose polar equation is r = a*cos(2*t)/cos(t) and whose Cartesian equation is x*(x^2+y^2) = a*(x^2-y^2) or y = +- x*sqrt((a-x)/(a+x)). See the curve with its loop at the Mathcurve link; the loop appears for -Pi/4 <= t <= Pi/4. - Bernard Schott, Jan 28 2020
|
|
LINKS
|
|
|
FORMULA
|
Equals Integral_{t=0..Pi/4} ((cos(2*t))/cos(t))^2 dt. - Bernard Schott, Jan 28 2020
Equals Sum_{k>=1} 2^k/(binomial(2*k,k)*k*(2*k + 1)).
Equals Integral_{x=0..1} arcsin(x)*arccos(x) dx. (End)
|
|
EXAMPLE
|
0.42920367320510338076867830836024855790141530...
|
|
MATHEMATICA
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|