login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201574
Decimal expansion of least x satisfying x^2 + 7 = csc(x) and 0 < x < Pi.
3
1, 4, 2, 9, 2, 7, 5, 8, 2, 9, 9, 3, 9, 2, 0, 8, 6, 7, 0, 0, 4, 3, 1, 0, 4, 4, 3, 0, 7, 5, 5, 4, 7, 4, 8, 2, 4, 0, 8, 8, 4, 3, 5, 1, 3, 9, 9, 1, 0, 5, 0, 9, 4, 5, 4, 0, 2, 7, 8, 5, 0, 1, 0, 4, 5, 9, 2, 8, 5, 0, 3, 0, 7, 9, 5, 5, 0, 5, 9, 4, 2, 2, 7, 2, 6, 3, 9, 7, 7, 6, 0, 5, 3, 6, 5, 1, 6, 0, 8
OFFSET
0,2
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.14292758299392086700431044307554748240884...
greatest: 3.08092023229520680455935849821275370108...
MATHEMATICA
a = 1; c = 7;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
RealDigits[r] (* A201574 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201575 *)
PROG
(PARI) a=1; c=7; solve(x=0.1, .2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A201564.
Sequence in context: A021237 A115881 A180434 * A077809 A201281 A095303
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 03 2011
STATUS
approved