login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the largest positive y satisfying the Diophantine equation x^2=y(y+n). a(n)=0 if there are no solutions.
4

%I #22 Aug 22 2024 09:18:13

%S 0,0,1,0,4,2,9,1,16,8,25,4,36,18,49,9,64,32,81,16,100,50,121,25,144,

%T 72,169,36,196,98,225,49,256,128,289,64,324,162,361,81,400,200,441,

%U 100,484,242,529,121,576,288,625,144,676,338,729,169,784,392,841,196

%N a(n) is the largest positive y satisfying the Diophantine equation x^2=y(y+n). a(n)=0 if there are no solutions.

%C The corresponding least y is given by A067721(n).

%H Vincenzo Librandi, <a href="/A115881/b115881.txt">Table of n, a(n) for n = 1..1000</a>

%F Empirical g.f.: -x^3*(x^9+x^8+2*x^7+4*x^6+x^5+6*x^4+2*x^3+4*x^2+1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - _Colin Barker_, Jun 26 2014

%F From empirical g.f.: a(n) = 1/2 - n/2 + 11*n^2/64 + (1/4 - 1/32*n^2) * (2*floor(n/4) + 2*floor((n+1)/4) - n + 1) + (1/4 - 5/64*n^2)*(-1)^n. - _Vaclav Kotesovec_, Jun 26 2014

%F From _Chai Wah Wu_, Aug 21 2024: (Start)

%F a(4*j) = j^2 - 2*j + 1,

%F a(4*j+1) = 4*j^2,

%F a(4*j+2) = 2*j^2,

%F a(4*j+3) = 4*j^2+4*j+1 (see A115880).

%F (End)

%e a(15)=49, since the solutions (x,y) to x^2=y(y+15) are (4,1), (10,5), (18, 12) and (56, 49). The largest y is 49, from (x,y)=(56,49).

%t Table[Max[y/.Solve[{x^2==y*(y+n),y>0},{x,y},Integers]],{n,1,100}]/.y->0 (* _Vaclav Kotesovec_, Jun 26 2014 *)

%o (Python)

%o def A115881(n):

%o a, b = divmod(n,4)

%o return ((c:=a**2)-(a<<1)+1,(d:=c<<2),c<<1,d+(a<<2)+1)[b] # _Chai Wah Wu_, Aug 21 2024

%Y Cf. A067721, A115878, A115879, A115880.

%K nonn

%O 1,5

%A _Giovanni Resta_, Feb 02 2006