login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115252 Decimal expansion of -(Pi*log((sqrt(2*Pi)*Gamma(3/4))/Gamma(1/4)))/2. 6
2, 6, 0, 4, 4, 2, 8, 0, 6, 3, 0, 0, 9, 8, 8, 4, 4, 5, 5, 4, 0, 0, 9, 3, 8, 6, 8, 7, 8, 9, 7, 2, 7, 2, 1, 9, 5, 3, 1, 8, 1, 9, 1, 7, 7, 7, 2, 3, 1, 4, 2, 6, 7, 4, 9, 8, 7, 6, 8, 7, 7, 9, 2, 1, 0, 5, 7, 7, 1, 6, 0, 3, 8, 1, 4, 7, 3, 1, 7, 3, 9, 2, 6, 9, 8, 9, 3, 3, 2, 0, 8, 0, 4, 0, 0, 9, 1, 4, 9, 8, 1, 1, 7, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This sequence (its negated version) is also the decimal expansion of the first Malmsten integral int_{x=1..infinity} log(log(x))/(1 + x^2) dx = int_{x=0..1} log(log(1/x))/(1 + x^2) dx = int_{x=0..infinity} 0.5*log(x)/cosh(x) dx = int_{x=Pi/4..Pi/2} log(log(tan(x))) dx = (1/2)*Pi*log(2) + (3/4)*Pi*log(Pi) - Pi*log(Gamma(1/4)). - Iaroslav V. Blagouchine, Mar 29 2015

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

I. V. Blagouchine, Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal, Volume 35, Issue 1, pp. 21-110, 2014, DOI: 10.1007/s11139-013-9528-5. PDF file

Eric Weisstein's World of Mathematics, Vardi's Integral

FORMULA

Equals integral_[0..1] log(1/log(1/x))/(1+x^2) dx. - Jean-François Alcover, Jan 28 2015

EXAMPLE

0.26044280630098844554009386878972721953181917772314...

MATHEMATICA

RealDigits[-Pi/2*Log[Sqrt[2 Pi] Gamma[3/4]/Gamma[1/4]], 10, 111][[1]] (* Robert G. Wilson v, Dec 06 2014 *)

PROG

(PARI) (-Pi*log((sqrt(2*Pi)*gamma(3/4))/gamma(1/4)))/2 \\ Michel Marcus, Dec 06 2014

CROSSREFS

Cf. A256127 (second Malmsten integral), A256128 (third Malmsten integral), A256129 (fourth Malmsten integral), A068466 (Gamma(1/4)), A256166 (log(Gamma(1/4))), A002162 (log 2), A053510 (log Pi).

Sequence in context: A021388 A011040 A274402 * A108431 A190144 A019967

Adjacent sequences:  A115249 A115250 A115251 * A115253 A115254 A115255

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jan 17 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 13:22 EDT 2018. Contains 313862 sequences. (Running on oeis4.)