login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256127
Decimal expansion of the second Malmsten integral: Integer_{x >= 1} log(log(x))/(1 + x + x^2) dx, negated.
6
1, 2, 6, 3, 2, 1, 4, 8, 1, 7, 0, 6, 2, 0, 9, 0, 3, 6, 3, 6, 5, 2, 2, 6, 7, 5, 3, 2, 5, 3, 2, 0, 2, 3, 9, 1, 8, 4, 4, 2, 4, 4, 3, 0, 9, 4, 6, 5, 2, 8, 3, 5, 1, 6, 3, 7, 8, 9, 9, 7, 4, 3, 0, 4, 2, 9, 0, 8, 6, 7, 4, 0, 0, 8, 5, 1, 2, 5, 4, 3, 7, 1, 7, 8, 0, 5, 2, 9, 7, 4, 1, 9, 8, 2, 9, 7, 0, 0, 2, 2, 4, 8, 7, 6
OFFSET
0,2
LINKS
Iaroslav V. Blagouchine, Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal, Volume 35, Issue 1, pp. 21-110, 2014, DOI: 10.1007/s11139-013-9528-5. PDF file
Wikipedia, Carl Malmsten
FORMULA
Equals Integral_{x=0..1} log(log(1/x))/(1 + x + x^2) dx.
Equals Integral_{x>=0} log(x)/(1 + 2*cosh(x)) dx.
Equals Pi*(8*log(2*Pi) - 3*log(3) - 12*log(Gamma(1/3)))/(6*sqrt(3)).
EXAMPLE
-0.12632148170620903636522675325320239184424430946528...
MAPLE
evalf(Pi*(8*log(2*Pi) - 3*log(3) - 12*log(GAMMA(1/3)))/(6*sqrt(3)), 120); # Vaclav Kotesovec, Mar 17 2015
MATHEMATICA
RealDigits[Integrate[Log[Log[1/x]]/(1 + x + x^2), {x, 0, 1}], 10, 100][[1]] (* Alonso del Arte, Mar 16 2015 *)
RealDigits[Pi*(8*Log[2*Pi] - 3*Log[3] - 12*Log[Gamma[1/3]])/(6*Sqrt[3]), 10, 105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
PROG
(PARI) Pi*(8*log(2*Pi) - 3*log(3) - 12*log(gamma(1/3)))/(6*sqrt(3)) \\ Michel Marcus, Mar 18 2015
(PARI) intnum(x=0, 1, log(log(1/x))/(1 + x + x^2))
(PARI) intnum(x=1, oo, log(log(x))/(1 + x + x^2))
(PARI) intnum(x=0, [oo, 1], log(x)/(1 + 2*cosh(x))) \\ Gheorghe Coserea, Sep 26 2018
CROSSREFS
Cf. A115252 (first Malmsten integral), A256128 (third Malmsten integral) , A256129 (fourth Malmsten integral), A073005 (Gamma(1/3)), A256165 (log(Gamma(1/3))), A061444 (log(2*Pi)), A002391 (log 3), A002194 (sqrt 3).
Sequence in context: A108443 A201761 A011042 * A136758 A056113 A251755
KEYWORD
nonn,cons
AUTHOR
STATUS
approved