OFFSET
0,1
COMMENTS
Also the domination number of the (n+2)-Dorogovtsev-Goltsev-Mendes graph, where the convention DGM(0) = P_2 is used. - Eric W. Weisstein, Jan 14 2024
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Domination Number.
Eric Weisstein's World of Mathematics, Dorogovtsev-Goltsev-Mendes Graph.
Index entries for linear recurrences with constant coefficients, signature (4,-3).
FORMULA
a(n) = (3^n + 3)/2.
a(n) = A067771(n-1), n > 0. - R. J. Mathar, Aug 11 2008
G.f.: (2-5*x)/((1-x)*(1-3*x)). - Vincenzo Librandi, Sep 13 2014
EXAMPLE
a(4) = (3^4 + 3)/2 = 84/2 = 42 = 3*a(3) - 3 = 3*15 - 3.
MAPLE
seq((3^i+3)/2, i=0..30);
MATHEMATICA
CoefficientList[Series[(2 - 5 x)/((1 - x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 13 2014 *)
NestList[3 # - 3 &, 2, 30] (* Harvey P. Dale, Feb 05 2021 *)
Table[(3^n + 3)/2, {n, 0, 20}] (* Eric W. Weisstein, Jan 14 2024 *)
(3^Range[0, 20] + 3)/2 (* Eric W. Weisstein, Jan 14 2024 *)
LinearRecurrence[{4, -3}, {2, 3}, 20] (* Eric W. Weisstein, Jan 14 2024 *)
PROG
(Magma) [(3^n+3)/2: n in [0..30]]; // Vincenzo Librandi, Sep 13 2014
(PARI) a(n)=(3^n+3)/2 \\ Charles R Greathouse IV, Sep 13 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Mar 02 2006
STATUS
approved