

A036418


Number of selfavoiding polygons with perimeter n on hexagonal [ =triangular ] lattice.


5



0, 0, 2, 3, 6, 15, 42, 123, 380, 1212, 3966, 13265, 45144, 155955, 545690, 1930635, 6897210, 24852576, 90237582, 329896569, 1213528736, 4489041219, 16690581534, 62346895571, 233893503330, 880918093866, 3329949535934
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 459.


LINKS

I. Jensen, Table of n, a(n) for n = 1..60
Iwan Jensen, Selfavoiding walks and polygons on the triangular lattice, arXiv:condmat/0409039 [condmat.statmech], 2004.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
Index entries for sequences related to A2 = hexagonal = triangular lattice


CROSSREFS

Cf. A001334, A284869.
Sequence in context: A006403 A129960 A115098 * A120589 A110181 A141351
Adjacent sequences: A036415 A036416 A036417 * A036419 A036420 A036421


KEYWORD

nonn,walk


AUTHOR

N. J. A. Sloane


STATUS

approved



