The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120589 Self-convolution of A120588, such that a(n) = 3*A120588(n) for n >= 2. 2
 1, 2, 3, 6, 15, 42, 126, 396, 1287, 4290, 14586, 50388, 176358, 624036, 2228700, 8023320, 29084535, 106073010, 388934370, 1432916100, 5301789570, 19692361260, 73398801060, 274447690920, 1029178840950, 3869712441972, 14585839204356 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n >= 2, a(n) equals 2^(2n+1) times the coefficient of Pi in 2F1([3/2, n+1], [5/2], -1). - John M. Campbell, Jul 17 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy] Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020. S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243 [math.CO], 2012. - From N. J. A. Sloane, May 09 2012 Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, arXiv:1302.2274 [math.CO], 2013. Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, 15 (2015), #A16. FORMULA a(n) = 3*A000108(n-1) for n >= 2, where A000108 are the Catalan numbers. G.f.: (5 - 2*x - 3*sqrt(1-4*x))/2. - G. C. Greubel, Feb 18 2019 EXAMPLE A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 + ... A(x)^(1/2) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ... MATHEMATICA Join[{1, 2, 3}, Table[3*(2*n)!/n!/(n+1)!, {n, 2, 40}]] CoefficientList[Series[(5-2x -3Sqrt[1-4x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *) PROG (PARI) {a(n)=local(A=1+x+x^2+x*O(x^n)); for(i=0, n, A=A-3*A+2+x+A^2); polcoeff(A^2, n)} (PARI) my(x='x+O('x^30)); Vec((5-2*x-3*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 18 2019 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-2*x-3*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019 (Sage) ((5-2*x-3*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019 CROSSREFS Cf. A120588 (A(x)^(1/2)); A120590-A120607. Sequence in context: A129960 A115098 A036418 * A110181 A141351 A088793 Adjacent sequences:  A120586 A120587 A120588 * A120590 A120591 A120592 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 16 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 22:06 EDT 2021. Contains 345053 sequences. (Running on oeis4.)