|
|
A114505
|
|
Numbers n such that the n-th hexagonal number is a 7-almost prime.
|
|
1
|
|
|
48, 64, 68, 72, 80, 88, 96, 104, 108, 122, 140, 162, 168, 188, 203, 208, 216, 228, 230, 240, 243, 264, 272, 280, 308, 312, 324, 360, 378, 380, 396, 408, 410, 424, 428, 438, 440, 446, 450, 473, 486, 513, 518, 527, 544, 564, 567, 572, 578, 620, 638, 662, 666, 675, 689, 696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
There are no prime hexagonal numbers. The n-th Hexagonal number A000384(n) = n*(2*n-1) is semiprime iff both n and 2*n-1 are prime iff A000384(n) is an element of A001358 iff n is an element of A005382.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(1) = 48 because HexagonalNumber(48) = H(48) = 48*(2*48-1) = 4560 = 2^4 * 3 * 5 * 19 is a 7-almost prime.
a(2) = 64 because H(64) = 64*(2*64-1) = 8128 = 2^6 * 127 is a 7-almost prime.
|
|
MATHEMATICA
|
Select[Range[800], PrimeOmega[#(2#-1)]==7&] (* Harvey P. Dale, Jul 20 2013 *)
Position[PrimeOmega[PolygonalNumber[6, Range[700]]], 7]//Flatten (* Harvey P. Dale, Jan 10 2024 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|