login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114507
Number of Dyck paths of semilength n having no ascents of length 3.
3
1, 1, 2, 4, 10, 27, 79, 240, 750, 2387, 7711, 25214, 83315, 277799, 933596, 3159187, 10755190, 36811479, 126594819, 437220744, 1515844359, 5273760446, 18406122609, 64426136558, 226108087891, 795486834627, 2804993559426
OFFSET
0,3
COMMENTS
Also number of ordered trees with n edges that have no vertices of outdegree 3.
FORMULA
G.f. G satisfies z^4*G^4-z^3*G^3+zG^2-G+1=0.
a(n) = 1/n*sum(j=ceiling((n+1)/2)..n, C(n,j)*C(4*j-2*n-2,j-1)*(-1)^(n-j)) n>0. [From Vladimir Kruchinin, Mar 07 2011]
D-finite with recurrence 2*n*(26405927*n-73197215)*(2*n+3)*(n+1)*a(n) +2*n*(2*n+1)*(26405927*n^2-273126414*n+480676927)*a(n-1) +4*(-793701648*n^4+4928830819*n^3-11073984912*n^2+10499531162*n-3092762541)*a(n-2) +2*(375778330*n^4-3447814000*n^3+22123257551*n^2-60324066977*n+51211836006)*a(n-3) +2*(12664700570*n^4-145150764350*n^3+621947195977*n^2-1179232268341*n+833841845214)*a(n-4) -3*(n-4)*(11017381441*n^3-111829680906*n^2+390445674963*n-461862831838)*a(n-5) -(n-4)*(n-5)*(30888861033*n^2-148676625095*n+156786419682)*a(n-6) +3206*(n-5)*(n-6)*(18970222*n-55906401)*(n-4)*a(n-7)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(3) = 4 because we have UDUDUD, UDUUDD, UUDDUD and UUDUDD, where U=(1,1), D=(1,-1).
MAPLE
Order:=36: Y:=solve(series((Y-Y^2)/(1-Y^3+Y^4), Y)=z, Y): seq(coeff(Y, z^n), n=1..32); #(Y=zG)
PROG
(Maxima) a114507(n):= 1/n*sum(binomial(n, j)*binomial(4*j-2*n-2, j-1) *(-1)^(n-j), j, ceiling((n+1)/2), n); [Vladimir Kruchinin, Mar 07 2011].
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 03 2005
STATUS
approved