login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Dyck paths of semilength n having no ascents of length 3.
3

%I #11 Jul 26 2022 14:14:41

%S 1,1,2,4,10,27,79,240,750,2387,7711,25214,83315,277799,933596,3159187,

%T 10755190,36811479,126594819,437220744,1515844359,5273760446,

%U 18406122609,64426136558,226108087891,795486834627,2804993559426

%N Number of Dyck paths of semilength n having no ascents of length 3.

%C Also number of ordered trees with n edges that have no vertices of outdegree 3.

%F G.f. G satisfies z^4*G^4-z^3*G^3+zG^2-G+1=0.

%F a(n) = 1/n*sum(j=ceiling((n+1)/2)..n, C(n,j)*C(4*j-2*n-2,j-1)*(-1)^(n-j)) n>0. [From _Vladimir Kruchinin_, Mar 07 2011]

%F D-finite with recurrence 2*n*(26405927*n-73197215)*(2*n+3)*(n+1)*a(n) +2*n*(2*n+1)*(26405927*n^2-273126414*n+480676927)*a(n-1) +4*(-793701648*n^4+4928830819*n^3-11073984912*n^2+10499531162*n-3092762541)*a(n-2) +2*(375778330*n^4-3447814000*n^3+22123257551*n^2-60324066977*n+51211836006)*a(n-3) +2*(12664700570*n^4-145150764350*n^3+621947195977*n^2-1179232268341*n+833841845214)*a(n-4) -3*(n-4)*(11017381441*n^3-111829680906*n^2+390445674963*n-461862831838)*a(n-5) -(n-4)*(n-5)*(30888861033*n^2-148676625095*n+156786419682)*a(n-6) +3206*(n-5)*(n-6)*(18970222*n-55906401)*(n-4)*a(n-7)=0. - _R. J. Mathar_, Jul 26 2022

%e a(3) = 4 because we have UDUDUD, UDUUDD, UUDDUD and UUDUDD, where U=(1,1), D=(1,-1).

%p Order:=36: Y:=solve(series((Y-Y^2)/(1-Y^3+Y^4),Y)=z,Y): seq(coeff(Y,z^n),n=1..32); #(Y=zG)

%o (Maxima) a114507(n):= 1/n*sum(binomial(n,j)*binomial(4*j-2*n-2, j-1) *(-1)^(n-j),j,ceiling((n+1)/2),n); [_Vladimir Kruchinin_, Mar 07 2011].

%Y Cf. A102403, A114506, A114509.

%K nonn

%O 0,3

%A _Emeric Deutsch_, Dec 03 2005