login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114508
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having k ascents of length 4 (0<=k<=floor(n/4)). Also number of ordered trees with n edges which have k vertices of outdegree 4.
2
1, 1, 2, 5, 13, 1, 37, 5, 111, 21, 345, 84, 1104, 322, 4, 3611, 1215, 36, 12016, 4555, 225, 40548, 17028, 1210, 138414, 63636, 5940, 22, 477076, 238004, 27534, 286, 1657956, 891268, 122850, 2366, 5802920, 3342375, 533625, 15925, 20436910, 12552580
OFFSET
0,3
COMMENTS
Row n has 1+floor(n/4) terms. Row sums yield the Catalan numbers (A000108). Column 0 yields A114509. Sum(kT(n,k),k=0..floor(n/4))=binomial(2n-5,n-4) (A002054).
FORMULA
G.f. G=G(t, z) satisfies (1-t)z^5*G^5-(1-t)z^4*G^4+zG^2-G+1=0.
EXAMPLE
T(5,1)=5 because we have UDUUUUDDDD, UUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD and UUUUDUDDDD, where U=(1,1), D=(1,-1).
Triangle starts:
1;
1;
2;
5;
13,1;
37,5;
111,21;
345,84;
1104,322,4;
3611,1215,36;
MAPLE
Order:=20: Y:=solve(series((Y-Y^2)/(1-(1-t)*Y^4+(1-t)*Y^5), Y)=z, Y): 1; for n from 1 to 17 do seq(coeff(t*coeff(Y, z^(n+1)), t^j), j=1..1+floor(n/4)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 03 2005
STATUS
approved