OFFSET
0,5
COMMENTS
T(n,k) is the number of Łukasiewicz paths of length n having k steps (1,1). A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: T(3,0)=2 because we have HHH and U(2)DD, where H=(1,0), U(2)=(1,2) and D=(1,-1). Row n has 1+floor(n/2) terms. Row sums yield the Catalan numbers (A000108). T(2n,n)=A000108(n). Column 0 is A102403
LINKS
FORMULA
G.f.: G=G(t,z) satisfies z^3*(1-t)G^3+z(1-z+tz)G^2-G+1=0.
EXAMPLE
T(4,2) = 2 because we have UUDDUUDD and UUDUUDDD, where U=(1,1) and D=(1,-1).
Triangle begins:
1;
1;
1, 1;
2, 3;
6, 6, 2;
17, 15, 10;
MATHEMATICA
m = 14; G[_, _] = 0;
Do[G[t_, z_] = 1 + G[t, z]^2 z + G[t, z]^2 t z^2 - G[t, z]^2 z^2 + G[t, z]^3 z^3 - G[t, z]^3 t z^3 + O[t]^m + O[z]^m, {m}];
CoefficientList[#, t]& /@ Take[CoefficientList[G[t, z], z], m] // Flatten (* Jean-François Alcover, Oct 05 2019 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jan 06 2005
STATUS
approved