This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114049 x such that x^2 - 21*y^2 = 1. 3
 1, 55, 6049, 665335, 73180801, 8049222775, 885341324449, 97379496466615, 10710859270003201, 1178097140203885495, 129579974563157401249, 14252619104807110251895, 1567658521554218970307201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is computed with g(1e9,21) in the PARI program. A Pellian equation - Benoit Cloitre, Feb 03 2006 Numbers m such that 21*(m^2-1) is square. - Vincenzo Librandi, Nov 13 2010 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..489 (terms 0..130 from Vincenzo Librandi) Tanya Khovanova, Recursive Sequences John Robertson, Home page. Index entries for linear recurrences with constant coefficients, signature (110, -1). FORMULA a(0)=1, a(1)=55, a(n)=110*a(n-1)-a(n-2). - Benoit Cloitre, Feb 03 2006 a(n)=(1/2)*(55+12*sqrt(21))^n+(1/2)*(55-12*sqrt(21))^n, with n>=0. - Paolo P. Lava, Sep 26 2008 G.f.: (1-55*x)/(1-110*x+x^2). - Philippe Deléham, Nov 18 2008 EXAMPLE (55^2-1)/21 = 12^2 MATHEMATICA Table[ Numerator@ FromContinuedFraction@ ContinuedFraction[Sqrt@21, Length@ Last@ ContinuedFraction@ Sqrt@21*n], {n, 12}] (* Robert G. Wilson v, Feb 28 2006 *) LinearRecurrence[{110, -1}, {1, 55}, 20] (* Harvey P. Dale, Jan 27 2013 *) PROG (PARI) g(n, k) = for(y=0, n, x=k*y^2+1; if(issquare(x), print1(floor(sqrt(x))", "))) (PARI) a0=1; a1=55; for(n=2, 30, a2=110*a1-a0; a0=a1; a1=a2; print1(a2, ", ")) \\ Benoit Cloitre CROSSREFS Sequence in context: A116110 A060204 A231783 * A028471 A004708 A269500 Adjacent sequences:  A114046 A114047 A114048 * A114050 A114051 A114052 KEYWORD easy,nonn AUTHOR Cino Hilliard, Feb 01 2006 EXTENSIONS More terms from Benoit Cloitre, Feb 03 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.