login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114049
x such that x^2 - 21*y^2 = 1.
3
1, 55, 6049, 665335, 73180801, 8049222775, 885341324449, 97379496466615, 10710859270003201, 1178097140203885495, 129579974563157401249, 14252619104807110251895, 1567658521554218970307201
OFFSET
0,2
COMMENTS
This sequence is computed with g(1e9,21) in the PARI program.
A Pellian equation - Benoit Cloitre, Feb 03 2006
Numbers m such that 21*(m^2-1) is square. - Vincenzo Librandi, Nov 13 2010
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..489 (terms 0..130 from Vincenzo Librandi)
Tanya Khovanova, Recursive Sequences
John Robertson, Home page.
FORMULA
a(0)=1, a(1)=55, a(n)=110*a(n-1)-a(n-2). - Benoit Cloitre, Feb 03 2006
G.f.: (1-55*x)/(1-110*x+x^2). - Philippe Deléham, Nov 18 2008
EXAMPLE
(55^2-1)/21 = 12^2
MATHEMATICA
Table[ Numerator@ FromContinuedFraction@ ContinuedFraction[Sqrt@21, Length@ Last@ ContinuedFraction@ Sqrt@21*n], {n, 12}] (* Robert G. Wilson v, Feb 28 2006 *)
LinearRecurrence[{110, -1}, {1, 55}, 20] (* Harvey P. Dale, Jan 27 2013 *)
PROG
(PARI) g(n, k) = for(y=0, n, x=k*y^2+1; if(issquare(x), print1(floor(sqrt(x))", ")))
(PARI) a0=1; a1=55; for(n=2, 30, a2=110*a1-a0; a0=a1; a1=a2; print1(a2, ", ")) \\ Benoit Cloitre
CROSSREFS
Sequence in context: A358044 A060204 A231783 * A028471 A004708 A269500
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Feb 01 2006
EXTENSIONS
More terms from Benoit Cloitre, Feb 03 2006
STATUS
approved