login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114050 x-values in the solution to x^2 - 22*y^2 = 1. 3
1, 197, 77617, 30580901, 12048797377, 4747195585637, 1870383011943601, 736926159510193157, 290347036464004160257, 114395995440658128948101, 45071731856582838801391537, 17758147955498197829619317477 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A pellian equation (Pell's equation). - Benoit Cloitre, Feb 03 2006

The corresponding values of y of this Pell equation are in A174766. - Vincenzo Librandi, Dec 21 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Tanya Khovanova, Recursive Sequences

Author?, Title?

John Robertson, Home page.

Index entries for linear recurrences with constant coefficients, signature (394,-1).

FORMULA

a(1)=1, a(2)=197 then a(n)=394*a(n-1)-a(n-2). - Benoit Cloitre, Feb 03 2006

G.f.: x*(1-197x)/(1-394x+x^2). - Philippe Deléham, Nov 18 2008

MATHEMATICA

LinearRecurrence[{394, -1}, {1, 197}, 20] (* Harvey P. Dale, Nov 03 2011 *)

PROG

(PARI) g(n, k) = for(y=0, n, x=k*y^2+1; if(issquare(x), print1(floor(sqrt(x))", ")))

(PARI) a=vector(12); a[1]=1; a[2]=197; for(i=3, #a, a[i]=394*a[i-1]-a[i-2]); a (Cloitre)

(MAGMA) I:=[1, 197]; [n le 2 select I[n] else 394*Self(n-1)-Self(n-2): n (MAGMA) in [1..40]]; // Vincenzo Librandi, Dec 21 2011

CROSSREFS

Sequence in context: A231462 A188361 A097733 * A268168 A145452 A286853

Adjacent sequences:  A114047 A114048 A114049 * A114051 A114052 A114053

KEYWORD

nonn,easy

AUTHOR

Cino Hilliard, Feb 01 2006

EXTENSIONS

More terms from Benoit Cloitre, Feb 03 2006

Offset changed from 0 to 1, adapted G.f. and formula by Vincenzo Librandi, Dec 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 09:54 EDT 2017. Contains 290864 sequences.