This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114048 x-values in the solution to x^2 - 19*y^2 = 1. 4
 1, 170, 57799, 19651490, 6681448801, 2271672940850, 772362118440199, 262600848596726810, 89283516160768675201, 30356132893812752841530, 10320995900380175197444999, 3509108249996365754378458130 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is computed with g(1e9,19) in the Pari program. A pellian equation (Pell's equation). - Benoit Cloitre, Feb 03 2006 The corresponding values of y of this Pell equation are in A174765. - Vincenzo Librandi, Dec 21 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Tanya Khovanova, Recursive Sequences John Robertson, Home page. Index entries for linear recurrences with constant coefficients, signature (340,-1). FORMULA a(1)=1, a(2)=170 then a(n)=340*a(n-1)-a(n-2). - Benoit Cloitre, Feb 03 2006 G.f.: x*(1-170x)/(1-340x+x^2). - Philippe Deléham, Nov 18 2008 EXAMPLE (170^2-1)/19 = 39^2. MATHEMATICA LinearRecurrence[{340, -1}, {1, 170}, 30] (* Vincenzo Librandi, Dec 21 2011 *) PROG (PARI) g(n, k) = for(y=0, n, x=k*y^2+1; if(issquare(x), print1(floor(sqrt(x))", "))) (PARI) a(n)=real((170+39*quadgen(4*19))^n) /* Michael Somos, Feb 15 2006 */ (PARI) a=vector(12); a[1]=1; a[2]=170; for(i=3, #a, a[i]=340*a[i-1]-a[i-2]); a \\ Benoit Cloitre (MAGMA) I:=[1, 170]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 21 2011 CROSSREFS Cf. A174765. Sequence in context: A133328 A098244 A250957 * A187704 A263059 A243294 Adjacent sequences:  A114045 A114046 A114047 * A114049 A114050 A114051 KEYWORD nonn,easy AUTHOR Cino Hilliard, Feb 01 2006 EXTENSIONS More terms from Benoit Cloitre, Feb 03 2006 Offset changed from 0 to 1 and g.f. adapted by Vincenzo Librandi, Dec 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 19:35 EDT 2018. Contains 312918 sequences. (Running on oeis4.)