login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113548
Least non-palindromic number k such that k and its digital reversal both have exactly n prime divisors.
1
13, 12, 132, 1518, 15015, 204204, 10444434, 241879638, 20340535215, 242194868916, 136969856585562, 2400532020354468, 484576809394483806, 200939345091539746692
OFFSET
1,1
COMMENTS
This sequence does not allow ending in 0, else a(8) = 208888680, a(11) = 64635504163230 and a(13) = 477566276048801940. - Michael S. Branicky, Feb 14 2023
FORMULA
a(n) >= A239696(n). - Daniel Suteu, Feb 18 2023
EXAMPLE
a(1)=13=13 since 31=31,
a(2)=12=2^2*3 since 21=3*7,
a(3)=132=2^2*3*11 since 231=3*7*11,
...
a(7)=10444434=2*3*7*11*13*37*47 since 43444401=3*7*11*13*17*23*37,
a(8)=241879638=2*3*7*11*13*17*23*103 since 836978142=2*3*7*11*13*23*73*83.
MATHEMATICA
r[n_] := FromDigits[ Reverse[ IntegerDigits[ n]]]; f[n_] := Block[{k = r[n], len = Length[ FactorInteger[n]]}, If[k != n && len == Length[ FactorInteger[ r[n]]], len, 0]]; t = Table[0, {10}]; Do[ a = f[n]; If[a > 0 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 107}]; t
PROG
(PARI)
generate(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), if(q==5 && m%2==0, next); my(v=m*q); while(v <= B, if(j==1, my(r=fromdigits(Vecrev(digits(v)))); if(v>=A && r != v && omega(r) == n, listput(list, v)), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
a(n) = my(x=vecprod(primes(n)), y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 18 2023
CROSSREFS
KEYWORD
base,hard,nonn
AUTHOR
EXTENSIONS
Edited and extended by Giovanni Resta, Jan 16 2006
a(9)-a(10) from Giovanni Resta, Feb 23 2014
a(11)-a(13) from Michael S. Branicky, Feb 14 2023
a(14) from Daniel Suteu, Feb 18 2023
STATUS
approved