login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least non-palindromic number k such that k and its digital reversal both have exactly n prime divisors.
1

%I #20 Feb 18 2023 08:09:36

%S 13,12,132,1518,15015,204204,10444434,241879638,20340535215,

%T 242194868916,136969856585562,2400532020354468,484576809394483806,

%U 200939345091539746692

%N Least non-palindromic number k such that k and its digital reversal both have exactly n prime divisors.

%C This sequence does not allow ending in 0, else a(8) = 208888680, a(11) = 64635504163230 and a(13) = 477566276048801940. - _Michael S. Branicky_, Feb 14 2023

%F a(n) >= A239696(n). - _Daniel Suteu_, Feb 18 2023

%e a(1)=13=13 since 31=31,

%e a(2)=12=2^2*3 since 21=3*7,

%e a(3)=132=2^2*3*11 since 231=3*7*11,

%e ...

%e a(7)=10444434=2*3*7*11*13*37*47 since 43444401=3*7*11*13*17*23*37,

%e a(8)=241879638=2*3*7*11*13*17*23*103 since 836978142=2*3*7*11*13*23*73*83.

%t r[n_] := FromDigits[ Reverse[ IntegerDigits[ n]]]; f[n_] := Block[{k = r[n], len = Length[ FactorInteger[n]]}, If[k != n && len == Length[ FactorInteger[ r[n]]], len, 0]]; t = Table[0, {10}]; Do[ a = f[n]; If[a > 0 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 107}]; t

%o (PARI)

%o generate(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), if(q==5 && m%2==0, next); my(v=m*q); while(v <= B, if(j==1, my(r=fromdigits(Vecrev(digits(v)))); if(v>=A && r != v && omega(r) == n, listput(list, v)), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));

%o a(n) = my(x=vecprod(primes(n)), y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ _Daniel Suteu_, Feb 18 2023

%Y Cf. A110843, A110819, A239696.

%K base,hard,nonn

%O 1,1

%A _Ryan Propper_ and _Robert G. Wilson v_, Sep 21 2005

%E Edited and extended by _Giovanni Resta_, Jan 16 2006

%E a(9)-a(10) from _Giovanni Resta_, Feb 23 2014

%E a(11)-a(13) from _Michael S. Branicky_, Feb 14 2023

%E a(14) from _Daniel Suteu_, Feb 18 2023