login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175850
Numbers m with property that m-th triangular number is a sum of divisors of some k-th triangular number (A175849).
2
1, 13, 12, 384, 575, 783, 4095, 4607, 4095, 6912, 12543, 13824, 16895, 21504, 20735, 27264, 40959, 68256, 76544, 104832, 175104, 130559, 146432, 180224, 129024, 202239, 316224, 328320, 372735, 395199, 512000, 532575, 512000, 732159, 787968, 1181439, 1756160, 2253824
OFFSET
1,2
LINKS
FORMULA
sigma(T(k)) = T(m); A000203(A000217(k)) = A000217(m).
EXAMPLE
Some pairs of k,m: 1,1; 8,13; 9,12; 215,384; 458,575; 520,783; 2232,4095; 3251,4607; 3634,4095; 5349,6912; 9489,12543; 10051,13824.
MATHEMATICA
f[n_] := Sqrt[8*DivisorSigma[1, n*(n+1)/2] + 1]; (f /@ Select[Range[10^4], IntegerQ @ f[#] &] - 1)/2 (* Amiram Eldar, Feb 23 2020 *)
PROG
(PARI) {for(n=1, 10^7, m=sigma(n*(n+1)/2); issquare(d=1+8*m) && print1((sqrtint(d)-1)/2, ", "))} \\ edited by Michel Marcus, Feb 23 2020
CROSSREFS
Cf. A000203 (sigma(n) = sum of divisors of n), A000217 (triangular numbers), A175849 (corresponding values of n).
Sequence in context: A113548 A249998 A195210 * A176306 A291368 A051392
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 27 2010
EXTENSIONS
Data corrected and extended by Amiram Eldar, Feb 23 2020
STATUS
approved