Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Feb 23 2020 07:09:33
%S 1,13,12,384,575,783,4095,4607,4095,6912,12543,13824,16895,21504,
%T 20735,27264,40959,68256,76544,104832,175104,130559,146432,180224,
%U 129024,202239,316224,328320,372735,395199,512000,532575,512000,732159,787968,1181439,1756160,2253824
%N Numbers m with property that m-th triangular number is a sum of divisors of some k-th triangular number (A175849).
%H Amiram Eldar, <a href="/A175850/b175850.txt">Table of n, a(n) for n = 1..226</a>
%H Zak Seidov, <a href="/A175850/a175850.txt">Table of values of n, m</a>
%H Zak Seidov, <a href="http://zak08.livejournal.com/24800.html">A175849,A175850</a>
%F sigma(T(k)) = T(m); A000203(A000217(k)) = A000217(m).
%e Some pairs of k,m: 1,1; 8,13; 9,12; 215,384; 458,575; 520,783; 2232,4095; 3251,4607; 3634,4095; 5349,6912; 9489,12543; 10051,13824.
%t f[n_] := Sqrt[8*DivisorSigma[1, n*(n+1)/2] + 1]; (f /@ Select[Range[10^4], IntegerQ @ f[#] &] - 1)/2 (* _Amiram Eldar_, Feb 23 2020 *)
%o (PARI) {for(n=1, 10^7, m=sigma(n*(n+1)/2); issquare(d=1+8*m) && print1((sqrtint(d)-1)/2, ", "))} \\ edited by _Michel Marcus_, Feb 23 2020
%Y Cf. A000203 (sigma(n) = sum of divisors of n), A000217 (triangular numbers), A175849 (corresponding values of n).
%K nonn
%O 1,2
%A _Zak Seidov_, Sep 27 2010
%E Data corrected and extended by _Amiram Eldar_, Feb 23 2020