login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112833
Number of domino tilings of a 3-pillow of order n.
20
1, 2, 5, 20, 117, 1024, 13357, 259920, 7539421, 326177280, 21040987113, 2024032315968, 290333133984905, 62102074862600192, 19808204598680574457, 9421371079480456587520, 6682097668647718038428569, 7067102111711681259234263040, 11145503882824383823706372042925
OFFSET
0,2
COMMENTS
A 3-pillow is also called an Aztec pillow. The 3-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 3 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
a(n)^(1/n^2) tends to 1.2211384384439007690866503099... - Vaclav Kotesovec, May 19 2020
LINKS
C. Hanusa, A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows, PhD Thesis, 2005, University of Washington, Seattle, USA.
EXAMPLE
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13.
MAPLE
with(LinearAlgebra):
b:= proc(x, y, k) option remember;
`if`(y>x or y<x/2, 0, `if`(x=k, `if`(y=k, 1, 0),
b(x, y-1, k)+b(x-1, y, k)+b(x-1, y-1, k)))
end:
P:= n-> Matrix(n, (i, j)-> b(i-1, i-1, j-1)):
R:= n-> Matrix(n, (i, j)-> `if`(i+j=n+1, 1, 0)):
a:= n-> Determinant(P(n)+R(n).(P(n)^(-1)).R(n)):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 26 2013
MATHEMATICA
b[x_, y_, k_] := b[x, y, k] = If[y>x || y<x/2, 0, If[x == k, If[y == k, 1, 0], b[x, y-1, k] + b[x-1, y, k] + b[x-1, y-1, k]]]; P[n_] := Table[ b[i-1, i-1, j-1], {i, 1, n}, {j, 1, n}]; R[n_] := Table[If[i+j == n+1, 1, 0], {i, 1, n}, {j, 1, n}]; a[0] = 1; a[n_] := Det[ P[n] + R[n].Inverse[P[n]].R[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 08 2015, after Alois P. Heinz *)
CROSSREFS
This sequence breaks down as A112834^2 times A112835, where A112835 is not necessarily squarefree.
5-pillows: A112836-A112838; 7-pillows: A112839-A112841; 9-pillows: A112842-A112844.
Related to A071101 and A071100.
Sequence in context: A000130 A288841 A009599 * A144503 A012321 A012519
KEYWORD
nonn
AUTHOR
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
STATUS
approved