OFFSET
0,2
COMMENTS
A 3-pillow is also called an Aztec pillow. The 3-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 3 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
a(n)^(1/n^2) tends to 1.2211384384439007690866503099... - Vaclav Kotesovec, May 19 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..100
C. Hanusa, A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows, PhD Thesis, 2005, University of Washington, Seattle, USA.
EXAMPLE
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13.
MAPLE
with(LinearAlgebra):
b:= proc(x, y, k) option remember;
`if`(y>x or y<x/2, 0, `if`(x=k, `if`(y=k, 1, 0),
b(x, y-1, k)+b(x-1, y, k)+b(x-1, y-1, k)))
end:
P:= n-> Matrix(n, (i, j)-> b(i-1, i-1, j-1)):
R:= n-> Matrix(n, (i, j)-> `if`(i+j=n+1, 1, 0)):
a:= n-> Determinant(P(n)+R(n).(P(n)^(-1)).R(n)):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 26 2013
MATHEMATICA
b[x_, y_, k_] := b[x, y, k] = If[y>x || y<x/2, 0, If[x == k, If[y == k, 1, 0], b[x, y-1, k] + b[x-1, y, k] + b[x-1, y-1, k]]]; P[n_] := Table[ b[i-1, i-1, j-1], {i, 1, n}, {j, 1, n}]; R[n_] := Table[If[i+j == n+1, 1, 0], {i, 1, n}, {j, 1, n}]; a[0] = 1; a[n_] := Det[ P[n] + R[n].Inverse[P[n]].R[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 08 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
STATUS
approved