Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 May 19 2020 06:00:06
%S 1,2,5,20,117,1024,13357,259920,7539421,326177280,21040987113,
%T 2024032315968,290333133984905,62102074862600192,19808204598680574457,
%U 9421371079480456587520,6682097668647718038428569,7067102111711681259234263040,11145503882824383823706372042925
%N Number of domino tilings of a 3-pillow of order n.
%C A 3-pillow is also called an Aztec pillow. The 3-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 3 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
%C a(n)^(1/n^2) tends to 1.2211384384439007690866503099... - _Vaclav Kotesovec_, May 19 2020
%H Alois P. Heinz, <a href="/A112833/b112833.txt">Table of n, a(n) for n = 0..100</a>
%H C. Hanusa, <a href="http://people.qc.cuny.edu/faculty/christopher.hanusa/research/Documents/papers/Dissertation.pdf">A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows</a>, PhD Thesis, 2005, University of Washington, Seattle, USA.
%e The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13.
%p with(LinearAlgebra):
%p b:= proc(x, y, k) option remember;
%p `if`(y>x or y<x/2, 0, `if`(x=k, `if`(y=k, 1, 0),
%p b(x, y-1, k)+b(x-1, y, k)+b(x-1, y-1, k)))
%p end:
%p P:= n-> Matrix(n, (i, j)-> b(i-1, i-1, j-1)):
%p R:= n-> Matrix(n, (i, j)-> `if`(i+j=n+1, 1, 0)):
%p a:= n-> Determinant(P(n)+R(n).(P(n)^(-1)).R(n)):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Apr 26 2013
%t b[x_, y_, k_] := b[x, y, k] = If[y>x || y<x/2, 0, If[x == k, If[y == k, 1, 0], b[x, y-1, k] + b[x-1, y, k] + b[x-1, y-1, k]]]; P[n_] := Table[ b[i-1, i-1, j-1], {i, 1, n}, {j, 1, n}]; R[n_] := Table[If[i+j == n+1, 1, 0], {i, 1, n}, {j, 1, n}]; a[0] = 1; a[n_] := Det[ P[n] + R[n].Inverse[P[n]].R[n]]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Nov 08 2015, after _Alois P. Heinz_ *)
%Y This sequence breaks down as A112834^2 times A112835, where A112835 is not necessarily squarefree.
%Y 5-pillows: A112836-A112838; 7-pillows: A112839-A112841; 9-pillows: A112842-A112844.
%Y Related to A071101 and A071100.
%K nonn
%O 0,2
%A Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005