login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112836
Number of domino tilings of a 5-pillow of order n.
11
1, 2, 5, 13, 52, 261, 1666, 14400, 159250, 2308545, 43718544, 1079620569, 34863330980, 1466458546176, 80646187346132, 5787269582487581, 541901038236234048, 66279540183479379277, 10578427028263503488000
OFFSET
0,2
COMMENTS
A 5-pillow is a generalized Aztec pillow. The 5-pillow of order n is a rotationally-symmetric region. It has a 2 X 2n central band of squares and then steps up from this band with steps of 5 horizontal squares to every 1 vertical square and steps down with steps of 1 horizontal square to every 1 vertical square.
REFERENCES
C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
EXAMPLE
The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34.
CROSSREFS
A112836 can be decomposed as A112837^2 times A112838, where A112838 is not necessarily squarefree.
3-pillows: A112833-A112835; 7-pillows: A112839-A112841; 9-pillows: A112842-A112844.
Sequence in context: A059103 A365709 A260709 * A353719 A353722 A105905
KEYWORD
nonn
AUTHOR
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
STATUS
approved