login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260709
Smallest nonsquare congruent to a square (mod k^2) for all k = 1..n.
2
2, 5, 13, 52, 241, 241, 436, 1009, 1009, 1009, 2641, 2641, 8089, 8089, 8089, 8089, 18001, 18001, 53881, 53881, 53881, 53881, 87481, 87481, 87481, 87481, 87481, 87481, 117049, 117049, 515761, 515761, 515761, 515761, 515761, 515761, 1083289, 1083289, 1083289, 1083289
OFFSET
1,1
COMMENTS
A variant of A081650 which uses the remainder modulo k^2 instead of the congruence (mod k^2).
Suggested by Don Reble and R. Israel and the original title of A081650.
LINKS
Robert Israel and Emmanuel Vantieghem, Table of n, a(n) for n = 1..81[Terms 1 through 70 were computed by R. Israel: terms 71 through 82 by E. Vantieghem. Nov 23 2015]
R. Israel in reply to Don Reble, A081650, SeqFan list, Nov. 17, 2015
MATHEMATICA
(* to get the sequence up to B *)
VQR=Table[Union[Mod[Range[(n^2)/2]^2, n^2]], {n, 2, 17}];
Print[2]; k=1; m=2; While[k<B, k++; m--; flag=0; While[flag==0, Label[m$]; m++; If[!IntegerQ[Sqrt[m]], j=1; While[j<k, j++; If[! MemberQ[VQR[[j-1]], Mod[m, j^2]], Goto[m$]]]; If[j==k, Print[m]; flag=1]]]](* Emmanuel Vantieghem, Nov 23 2013 *)
PROG
(PARI) t=2; for(n=1, 90, for(m=t, 9e9, issquare(m)&&next; for(k=1, n, issquare(Mod(m, k^2))||next(2)); print1(t=m, ", "); break))
(MATLAB)
N = 2*10^8; % to get all terms <= N
B = ones(1, N);
B([1:floor(sqrt(N))].^2) = 0;
m = 1;
while true
nsq = ones(m^2, 1);
sqs = unique(mod([1:m^2/2].^2, m^2));
sqs = [sqs(sqs > 0), m^2];
nsq(sqs) = 0;
S = nsq * ones(1, ceil(N/m^2));
S = reshape(S, 1, numel(S));
B(S(1:N)>0) = 0;
v = find(B, 1, 'first');
if numel(v) == 0
break
end
A(m) = v;
m = m + 1;
end
A % Robert Israel, Nov 17 2015
CROSSREFS
Cf. A081650.
Sequence in context: A303792 A059103 A365709 * A112836 A353719 A353722
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 17 2015
STATUS
approved