The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112449 a(n+2) = (a(n+1)^3 + a(n+1))/a(n) with a(0)=1, a(1)=1. 1
 1, 1, 2, 10, 505, 12878813, 4229958765311886322, 5876687051603582015287706866081267480733704277890 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A second-order recurrence with the Laurent property. This property is satisfied by any second-order recurrence of the form a(n+2) = f(a(n+1))/a(n) with f being a polynomial of the form f(x) = x*p(x) where p is a polynomial of degree d with integer coefficients such that p(0)=1 and p has the reciprocal property x^d*p(1/x) = p(x). Hence if a(0) = a(1) = 1 then a(n) is an integer for all n. As n tends to infinity, log(log(a(n)))/n tends to log((3+sqrt(5))/2) or about 0.962 (A202543). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10 S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics, 28 (2002), 119-144. FORMULA a(1-n) = a(n). - Seiichi Manyama, Nov 20 2016 MAPLE a:=1; a:=1; f(x):=x^3+x; for n from 0 to 8 do a[n+2]:=simplify(subs(x=a[n+1], f(x))/a[n]) od; s:=ln(10); s:=ln(505); for n from 3 to 10000 do s[n+2]:=evalf(3*s[n+1]+ln(1+exp(-2*s[n+1]))-s[n]): od: print(evalf(ln(s)/(10002))): evalf(ln((3+sqrt(5))/2)); # s[n]=ln(a[n]); ln(s[n])/n converges slowly to 0.962... f:=proc(n) option remember; local i, j, k, t1, t2, t3; if n <= 1 then RETURN(1); fi; (f(n-1)^3+f(n-1))/f(n-2); end; MATHEMATICA nxt[{a_, b_}]:={b, (b^3+b)/a}; NestList[nxt, {1, 1}, 10][[All, 1]] (* Harvey P. Dale, Jun 26 2017 *) PROG (Ruby) def A(l, m, n)   a = Array.new(2 * m, 1)   ary =    while ary.size < n + 1     i = a[1..-1].inject(:*) + a[m] ** l     break if i % a > 0     a = *a[1..-1], i / a     ary << a   end   ary end def A112449(n)   A(3, 1, n) end # Seiichi Manyama, Nov 20 2016 CROSSREFS Cf. A101879, A112373, A202543. Sequence in context: A059723 A334286 A265627 * A011824 A064300 A290060 Adjacent sequences:  A112446 A112447 A112448 * A112450 A112451 A112452 KEYWORD nonn AUTHOR Andrew Hone, Dec 12 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 20:49 EDT 2020. Contains 334765 sequences. (Running on oeis4.)