Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 26 2017 08:24:46
%S 1,1,2,10,505,12878813,4229958765311886322,
%T 5876687051603582015287706866081267480733704277890
%N a(n+2) = (a(n+1)^3 + a(n+1))/a(n) with a(0)=1, a(1)=1.
%C A second-order recurrence with the Laurent property. This property is satisfied by any second-order recurrence of the form a(n+2) = f(a(n+1))/a(n) with f being a polynomial of the form f(x) = x*p(x) where p is a polynomial of degree d with integer coefficients such that p(0)=1 and p has the reciprocal property x^d*p(1/x) = p(x). Hence if a(0) = a(1) = 1 then a(n) is an integer for all n.
%C As n tends to infinity, log(log(a(n)))/n tends to log((3+sqrt(5))/2) or about 0.962 (A202543).
%H Seiichi Manyama, <a href="/A112449/b112449.txt">Table of n, a(n) for n = 0..10</a>
%H S. Fomin and A. Zelevinsky, <a href="http://dx.doi.org/10.1006/aama.2001.0770">The Laurent Phenomenon</a>, Advances in Applied Mathematics, 28 (2002), 119-144.
%F a(1-n) = a(n). - _Seiichi Manyama_, Nov 20 2016
%p a[0]:=1; a[1]:=1; f(x):=x^3+x;
%p for n from 0 to 8 do a[n+2]:=simplify(subs(x=a[n+1],f(x))/a[n]) od;
%p s[3]:=ln(10); s[4]:=ln(505);
%p for n from 3 to 10000 do s[n+2]:=evalf(3*s[n+1]+ln(1+exp(-2*s[n+1]))-s[n]): od: print(evalf(ln(s[10002])/(10002))): evalf(ln((3+sqrt(5))/2));
%p # s[n]=ln(a[n]); ln(s[n])/n converges slowly to 0.962...
%p f:=proc(n) option remember; local i,j,k,t1,t2,t3; if n <= 1 then RETURN(1); fi; (f(n-1)^3+f(n-1))/f(n-2); end;
%p # _N. J. A. Sloane_
%t nxt[{a_,b_}]:={b,(b^3+b)/a}; NestList[nxt,{1,1},10][[All,1]] (* _Harvey P. Dale_, Jun 26 2017 *)
%o (Ruby)
%o def A(l, m, n)
%o a = Array.new(2 * m, 1)
%o ary = [1]
%o while ary.size < n + 1
%o i = a[1..-1].inject(:*) + a[m] ** l
%o break if i % a[0] > 0
%o a = *a[1..-1], i / a[0]
%o ary << a[0]
%o end
%o ary
%o end
%o def A112449(n)
%o A(3, 1, n)
%o end # _Seiichi Manyama_, Nov 20 2016
%Y Cf. A101879, A112373, A202543.
%K nonn
%O 0,3
%A _Andrew Hone_, Dec 12 2005