The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112447 a(2*n) = A001045(n+2); a(2*n+1) = A001045(n+1). 2
 1, 1, 3, 1, 5, 3, 11, 5, 21, 11, 43, 21, 85, 43, 171, 85, 341, 171, 683, 341, 1365, 683, 2731, 1365, 5461, 2731, 10923, 5461, 21845, 10923, 43691, 21845, 87381, 43691, 174763, 87381, 349525, 174763, 699051, 349525, 1398101, 699051, 2796203, 1398101, 5592405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Consider the Harmonacci sequence: H(1)=x, H(2)=y, H(3)=2xy/(x+y), H(4)=4xy/(3x+y)...; H(m) is the harmonic mean of H(m-1) and H(m-2). a(2n) and a(2n+1) are the denominator coefficients of H(n+3). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,1,0,2). FORMULA a(n) = (a(n-1)+1)/2 for n=2, 6, 10... a(n) = 4*a(n-1)-1 for n=3, 7, 11... a(n) = (a(n-1)-1)/2 for n=4, 8, 12... a(n) = 4*a(n-1)+1 for n=5, 9, 13.... From Colin Barker, Dec 15 2017: (Start) G.f.: (1 + x + 2*x^2) / ((1 + x^2)*(1 - 2*x^2)). a(n) = a(n-2) + 2*a(n-4) for n>3. (End) MATHEMATICA LinearRecurrence[{0, 1, 0, 2}, {1, 1, 3, 1}, 50] (* Harvey P. Dale, May 30 2018 *) PROG (PARI) Vec((1 + x + 2*x^2) / ((1 + x^2)*(1 - 2*x^2)) + O(x^60)) \\ Colin Barker, Dec 15 2017 CROSSREFS Cf. A001045. Sequence in context: A129095 A105604 A117576 * A289360 A290212 A289891 Adjacent sequences:  A112444 A112445 A112446 * A112448 A112449 A112450 KEYWORD nonn,easy AUTHOR Edwin F. Sampang, Dec 12 2005 EXTENSIONS Edited by Don Reble, Jan 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 7 14:34 EDT 2020. Contains 335495 sequences. (Running on oeis4.)