OFFSET
1,1
COMMENTS
a(37) = -1 since there is a covering of the set {371, 3711, 37111, ...} by the prime moduli 3, 7, 13, 37. Hence, there are infinitely many values -1 in the sequence (at 371, 3711, 37111, ...). - Emmanuel Vantieghem, Oct 27 2022
a(38) = -1 because 38 followed by m >= 1 1's is divisible by 3 or 37 or by (7*10^k-1)/3 if m = 3k. - Toshitaka Suzuki, Nov 07 2023
LINKS
Toshitaka Suzuki, Table of n, a(n) for n = 1..55
EXAMPLE
a(5) = 511111 because 51, 511, 5111 and 51111 are not primes.
MATHEMATICA
f[n_] := Block[{k = 1, e = Floor[Log[10, n] + 1]}, While[ !PrimeQ[n*10^k + (10^k - 1)/9], k++ ]; n*10^k + (10^k - 1)/9]; Array[f, 24] (* Robert G. Wilson v, Dec 05 2005 *)
Table[SelectFirst[Table[FromDigits[PadRight[IntegerDigits[k], n, 1]], {n, IntegerLength[k]+1, 250}], PrimeQ], {k, 25}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 30 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Dauchez (mdzdm(AT)yahoo.fr), Dec 04 2005
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Dec 05 2005
Name edited by Emmanuel Vantieghem, Oct 27 2022
STATUS
approved