Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jun 20 2024 02:42:20
%S 11,211,31,41,511111,61,71,811,911,101,1111111111111111111,
%T 121111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111,
%U 131,14111111111,151,16111,1711111111,181,191,2011,211,22111,2311,241
%N Smallest prime obtained by appending one or more 1's to n, -1 if no such prime exists.
%C a(37) = -1 since there is a covering of the set {371, 3711, 37111, ...} by the prime moduli 3, 7, 13, 37. Hence, there are infinitely many values -1 in the sequence (at 371, 3711, 37111, ...). - _Emmanuel Vantieghem_, Oct 27 2022
%C a(38) = -1 because 38 followed by m >= 1 1's is divisible by 3 or 37 or by (7*10^k-1)/3 if m = 3k. - _Toshitaka Suzuki_, Nov 07 2023
%H Toshitaka Suzuki, <a href="/A112386/b112386.txt">Table of n, a(n) for n = 1..55</a>
%e a(5) = 511111 because 51, 511, 5111 and 51111 are not primes.
%t f[n_] := Block[{k = 1, e = Floor[Log[10, n] + 1]}, While[ !PrimeQ[n*10^k + (10^k - 1)/9], k++ ]; n*10^k + (10^k - 1)/9]; Array[f, 24] (* _Robert G. Wilson v_, Dec 05 2005 *)
%t Table[SelectFirst[Table[FromDigits[PadRight[IntegerDigits[k],n,1]],{n,IntegerLength[k]+1,250}],PrimeQ],{k,25}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Nov 30 2017 *)
%Y Cf. A030430, A069568.
%K nonn,base
%O 1,1
%A Michel Dauchez (mdzdm(AT)yahoo.fr), Dec 04 2005
%E Edited, corrected and extended by _Robert G. Wilson v_, Dec 05 2005
%E Name edited by _Emmanuel Vantieghem_, Oct 27 2022