login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112385
a(n) = 6*binomial(4*n-1,n-1)/(4*n-1).
1
2, 6, 30, 182, 1224, 8778, 65780, 508950, 4034712, 32602328, 267535086, 2223463866, 18676869400, 158310871740, 1352392098120, 11631593739990, 100637721972216, 875325840117960, 7649219033276888, 67126255864788120, 591311470790795040, 5226783343136641530
OFFSET
1,1
REFERENCES
Madeline Jones, The Mysterious Flexagons (1966).
M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
LINKS
Vernon Gutenkunst, Trailblazing Hexagons
C. O. Oakley, and R. J. Wisner, Flexagons, Am. Math. Monthly 64 (3) (1957) 143-154, U_{3*lambda}.
FORMULA
D-finite with recurrence 3*n*(3*n-1)*(3*n-2)*a(n) -8*(4*n-5)*(4*n-3)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 05 2021
MATHEMATICA
Table[c=4n-1; 6 Binomial[c, n-1]/c, {n, 25}] (* Harvey P. Dale, Sep 13 2011 *)
CROSSREFS
Equals 2*A006632.
Sequence in context: A274966 A293653 A246541 * A195154 A353995 A353982
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 05 2005
STATUS
approved