login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112387
a(n) = 2^(n/2) if n is even and a(n-1) - a(n-2) if n is odd, a(1) = 1.
7
1, 1, 2, 1, 4, 3, 8, 5, 16, 11, 32, 21, 64, 43, 128, 85, 256, 171, 512, 341, 1024, 683, 2048, 1365, 4096, 2731, 8192, 5461, 16384, 10923, 32768, 21845, 65536, 43691, 131072, 87381, 262144, 174763, 524288, 349525, 1048576, 699051, 2097152, 1398101, 4194304
OFFSET
0,3
COMMENTS
This sequence originated from the Fibonacci sequence, but instead of adding the last two terms, you get the average. Example, if you have the initial condition a(1)=x and a(2)=y, a(3)=(x+y)/2, a(4)=(x+3y)/4, a(5)=(3x+5y)/8, a(6)=(5x+11y)/16 and so on and so forth. I used the coefficients of x and y as well as the denominator.
As n approaches infinity a(n)/a(n+1) oscillates between the values 3/2 and 1/3.
FORMULA
a(n) = 2^(n/2) if n is even, a(n) = a(n-1) - a(n-2) if n is odd, and a(1) = 1.
a(2n) = A000079(n), a(2n-1) = A001045(n).
G.f.: (1+x+x^2)/((1+x^2)*(1-2*x^2)). - Joerg Arndt, Apr 25 2021
a(n) = A135318(n + (-1)^n). - Paul Curtz, Sep 27 2023
E.g.f.: (3*cosh(sqrt(2)*x) + sin(x) + sqrt(2)*sinh(sqrt(2)*x))/3. - Stefano Spezia, Jun 30 2024
a(2*n) + a(2*n+1) = A048573(n); a(2*n+1) + a(2*n+2) = A001045(n+3). - Paul Curtz, Jan 03 2025
MAPLE
a:= proc(n) option remember;
`if`(n::even, 2^(n/2), a(n-1)-a(n-2))
end: a(1):=1:
seq(a(n), n=0..50); # Alois P. Heinz, Sep 27 2023
MATHEMATICA
a[1] = 1; a[2] = 2; a[n_] := a[n] = If[ EvenQ[n], 2^(n/2), a[n - 1] - a[n - 2]]; Array[a, 43] (* Robert G. Wilson v, Dec 05 2005 *)
nxt[{n_, a_, b_}]:={n+1, b, If[OddQ[n], 2^((n+1)/2), b-a]}; NestList[nxt, {2, 1, 2}, 50][[All, 2]] (* Harvey P. Dale, Jul 08 2019 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Edwin F. Sampang, Dec 05 2005
EXTENSIONS
Edited and extended by Robert G. Wilson v, Dec 05 2005
a(0)=1 prepended by Alois P. Heinz, Sep 27 2023
STATUS
approved