OFFSET
0,3
COMMENTS
This sequence originated from the Fibonacci sequence, but instead of adding the last two terms, you get the average. Example, if you have the initial condition a(1)=x and a(2)=y, a(3)=(x+y)/2, a(4)=(x+3y)/4, a(5)=(3x+5y)/8, a(6)=(5x+11y)/16 and so on and so forth. I used the coefficients of x and y as well as the denominator.
As n approaches infinity a(n)/a(n+1) oscillates between the values 3/2 and 1/3.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,0,2).
FORMULA
a(n) = 2^(n/2) if n is even, a(n) = a(n-1) - a(n-2) if n is odd, and a(1) = 1.
G.f.: (1+x+x^2)/((1+x^2)*(1-2*x^2)). - Joerg Arndt, Apr 25 2021
a(n) = A135318(n + (-1)^n). - Paul Curtz, Sep 27 2023
E.g.f.: (3*cosh(sqrt(2)*x) + sin(x) + sqrt(2)*sinh(sqrt(2)*x))/3. - Stefano Spezia, Jun 30 2024
MAPLE
a:= proc(n) option remember;
`if`(n::even, 2^(n/2), a(n-1)-a(n-2))
end: a(1):=1:
seq(a(n), n=0..50); # Alois P. Heinz, Sep 27 2023
MATHEMATICA
a[1] = 1; a[2] = 2; a[n_] := a[n] = If[ EvenQ[n], 2^(n/2), a[n - 1] - a[n - 2]]; Array[a, 43] (* Robert G. Wilson v, Dec 05 2005 *)
nxt[{n_, a_, b_}]:={n+1, b, If[OddQ[n], 2^((n+1)/2), b-a]}; NestList[nxt, {2, 1, 2}, 50][[All, 2]] (* Harvey P. Dale, Jul 08 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Edwin F. Sampang, Dec 05 2005
EXTENSIONS
Edited and extended by Robert G. Wilson v, Dec 05 2005
a(0)=1 prepended by Alois P. Heinz, Sep 27 2023
STATUS
approved