login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111912 Expansion of x*(2 +3*x +x^2 -2*x^5 -x^7 -x^8)/((1-x)*(1+x)*(1-x^4+x^8)). 4
0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1, 0, 2, 3, 3, 3, 5, 4, 6, 3, 5, 1, 5, 0, 2, -3, 1, -3, -1, -4, -2, -3, -1, -1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sequence has period 24.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..2000</a

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1,0,-1,0,1).

MAPLE

seq(coeff(series((x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))), x, n+1), x, n), n=0..75); # Muniru A Asiru, Jun 06 2018

MATHEMATICA

LinearRecurrence[{0, 1, 0, 1, 0, -1, 0, -1, 0, 1}, {0, 2, 3, 3, 3, 5, 4, 6, 3, 5}, 75] (* G. C. Greubel, Feb 12 2021 *)

PROG

(PARI) Vec(x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

(Sage)

def A111912_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) ).list()

A111912_list(75) # G. C. Greubel, Feb 12 2021

(Magma)

R<x>:=PowerSeriesRing(Integers(), 75);

Coefficients(R!( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) )); // G. C. Greubel, Feb 12 2021

CROSSREFS

Cf. A085846, A111913, A111914, A111915.

Sequence in context: A205778 A328972 A081831 * A096288 A339310 A184995

Adjacent sequences:  A111909 A111910 A111911 * A111913 A111914 A111915

KEYWORD

sign,easy,less

AUTHOR

Creighton Dement, Aug 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 18:28 EDT 2021. Contains 346359 sequences. (Running on oeis4.)