login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096288
Sum of digits of n in bases 2 and 3.
4
0, 2, 3, 3, 3, 5, 4, 6, 5, 3, 4, 6, 4, 6, 7, 7, 5, 7, 4, 6, 6, 6, 7, 9, 6, 8, 9, 5, 5, 7, 6, 8, 5, 5, 6, 8, 4, 6, 7, 7, 6, 8, 7, 9, 9, 7, 8, 10, 6, 8, 9, 9, 9, 11, 6, 8, 7, 7, 8, 10, 8, 10, 11, 9, 5, 7, 6, 8, 8, 8, 9, 11, 6, 8, 9, 9, 9, 11, 10, 12, 10, 4, 5, 7, 5, 7, 8, 8, 7, 9, 6, 8, 8, 8, 9, 11, 6, 8, 9, 7
OFFSET
0,2
COMMENTS
Let n = Sum(c(k)*2^k), c(k) = 0,1, be the binary form of n, n = Sum(d(k)*3^k), d(k) = 0,1,2, the ternary form; then a(n) = Sum(c(k)+d(k)).
a(n) mod 2 = doubled Thue-Morse sequence A095190.
Let s[b](n) denote the sum of the digits of n to the base b. Senge and Straus proved in 1973 that s[a](n) + s[b](n) approaches infinity as n approaches infinity if and only if log(a)/log(b) is irrational. Stewart (1980) obtained an effectively computable lower bound. - David Radcliffe, Jan 16 2024
LINKS
Jean-Marc Deshouillers, Laurent Habsieger, Shanta Laishram, and Bernard Landreau, Sums of the digits in bases 2 and 3, in: C. Elsholtz and P. Grabner (eds.), Number Theory - Diophantine Problems, Uniform Distribution and Applications: Festschrift in Honour of Robert F. Tichy's 60th Birthday, Springer, Cham, 2017, pp. 211-217; arXiv preprint, arXiv:1611.08180 [math.NT], 2016.
H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Period Math Hung 3 (1973), 93-100.
Cameron Stewart, On the representation of an integer in two different bases, Journal für die reine und angewandte Mathematik, 319 (1980), 63-72.
FORMULA
a(n) = A000120(n) + A053735(n). - Amiram Eldar, Jul 28 2023
a(n) > (log log n) / (log log log n + C) - 1 for n > 25, where C is effectively computable (Stewart 1980). - David Radcliffe, Jan 16 2024
EXAMPLE
n=11: 11=1*2^3+1*2^1+1*2^0, 1+1+1=3, 11=1*3^2+2*3^0, 1+2=3, so a(11)=3+3=6.
MAPLE
f := proc(n) local t1, t2, i;
t1:=convert(n, base, 2); t2:=convert(n, base, 3);
add(t1[i], i=1..nops(t1))+ add(t2[i], i=1..nops(t2));
end; # N. J. A. Sloane, Dec 05 2019
MATHEMATICA
a[n_] := Total @ IntegerDigits[n, 2] + Total @ IntegerDigits[n, 3];
a /@ Range[0, 100] (* Jean-François Alcover, Aug 21 2020 *)
Table[Total[Flatten[IntegerDigits[n, {2, 3}]]], {n, 0, 100}] (* Harvey P. Dale, Jan 29 2021 *)
PROG
(PARI) a(n) = sumdigits(n, 2) + sumdigits(n, 3); \\ Michel Marcus, Aug 21 2020
(Python)
sumdigits = lambda n, b: n % b + sumdigits(n // b, b) if n else 0
a = lambda n: sumdigits(n, 2) + sumdigits(n, 3) # David Radcliffe, Jan 16 2024
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Miklos Kristof, Peter Boros, Jun 24 2004
EXTENSIONS
Edited by N. J. A. Sloane, Dec 05 2019
STATUS
approved