login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A111913
Expansion of x*(-2-3*x-x^2+x^7+x^8+2*x^4) / ((x-1)*(x+1)*(x^8-x^4+1)).
4
0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1, 0, 2, 3, 3
OFFSET
0,2
COMMENTS
It appears that (a(n)) has period 24.
The above conjecture is correct, since x^24 = 1 mod (x-1)*(x+1)*(x^8-x^4+1). - Charles R Greathouse IV, Feb 07 2013
Floretion Algebra Multiplication Program, FAMP Code: 4ibasesigcycsumseq[ + .5'i + .5j' + .5'ij' + .5e], sumtype: Y[8] = (int)Y[6] - (int)Y[7] + Y[8] + sum (internal program code); apart from initial term 0.
FORMULA
a(n) = a(n-2) + a(n-4) - a(n-6) - a(n-8) + a(n-10) for n>9. - Colin Barker, May 18 2019
MATHEMATICA
LinearRecurrence[{0, 1, 0, 1, 0, -1, 0, -1, 0, 1}, {0, 2, 3, 3, 3, 3, 6, 4, 5, 1}, 120] (* Harvey P. Dale, Apr 14 2019 *)
PROG
(PARI) a(n)=[0, 2, 3, 3, 3, 3, 6, 4, 5, 1, 5, 1, 4, -2, 1, -3, 1, -3, -2, -4, -1, -1, -1, -1][n%24+1] \\ Charles R Greathouse IV, Feb 07 2013
(PARI) concat(0, Vec(x*(2 + 3*x + x^2 - 2*x^4 - x^7 - x^8) / ((1 - x)*(1 + x)*(1 - x^4 + x^8)) + O(x^80))) \\ Colin Barker, May 18 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Aug 20 2005
STATUS
approved