OFFSET
0,2
COMMENTS
Row sums of A110488.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..595
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..(n-k)} 2*(j+1)*(k-1)^j*C(2*(n-k)+1, n-k-j)/ (n-k+j+2).
MATHEMATICA
T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 29 2017 *)
PROG
(PARI) a(n) = sum(k=0, n, sum(j=0, (n-k), 2*(j+1)*(k-1)^j*binomial(2*(n-k)+1, n-k-j)/ (n-k+j+2))); \\ Michel Marcus, Aug 29 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 22 2005
STATUS
approved