login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110489
Row sums of a triangle based on the Catalan numbers.
2
1, 2, 5, 14, 43, 142, 497, 1828, 7037, 28326, 119361, 527748, 2454929, 12041410, 62354641, 340840118, 1963757863, 11896370734, 75549183725, 501393978466, 3467199478543, 24916100775758, 185646100106929, 1431332539961350
OFFSET
0,2
COMMENTS
Row sums of A110488.
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..(n-k)} 2*(j+1)*(k-1)^j*C(2*(n-k)+1, n-k-j)/ (n-k+j+2).
MATHEMATICA
T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 29 2017 *)
PROG
(PARI) a(n) = sum(k=0, n, sum(j=0, (n-k), 2*(j+1)*(k-1)^j*binomial(2*(n-k)+1, n-k-j)/ (n-k+j+2))); \\ Michel Marcus, Aug 29 2017
CROSSREFS
Cf. A110488.
Sequence in context: A112808 A369158 A088927 * A005425 A035349 A155888
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 22 2005
STATUS
approved