login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of a triangle based on the Catalan numbers.
2

%I #8 Aug 29 2017 04:52:24

%S 1,2,5,14,43,142,497,1828,7037,28326,119361,527748,2454929,12041410,

%T 62354641,340840118,1963757863,11896370734,75549183725,501393978466,

%U 3467199478543,24916100775758,185646100106929,1431332539961350

%N Row sums of a triangle based on the Catalan numbers.

%C Row sums of A110488.

%H G. C. Greubel, <a href="/A110489/b110489.txt">Table of n, a(n) for n = 0..595</a>

%F a(n) = Sum_{k=0..n} Sum_{j=0..(n-k)} 2*(j+1)*(k-1)^j*C(2*(n-k)+1, n-k-j)/ (n-k+j+2).

%t T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 50}] (* _G. C. Greubel_, Aug 29 2017 *)

%o (PARI) a(n) = sum(k=0, n, sum(j=0, (n-k), 2*(j+1)*(k-1)^j*binomial(2*(n-k)+1, n-k-j)/ (n-k+j+2))); \\ _Michel Marcus_, Aug 29 2017

%Y Cf. A110488.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Jul 22 2005