OFFSET
0,2
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..300
Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
FORMULA
a(n) = sum(k=0, n, sum(i=0, k, C(n, 2i)*C(n-2i, k-i)*A001764(i) )), where A001764(i)=(3i)!/[i!(2i+1)! ] (from Michael Somos).
G.f. satisfies A(x) = 1/(1-2x) + x^2*A(x)^3.
a(n) ~ (2 + 3*sqrt(3)/2)^(n + 3/2) / (3^(7/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 10 2020
EXAMPLE
A(x) = 1/(1-2x) + x^2*A(x)^3 since 1/(1-2x) = 1 + 2x + 4x^2 + 8x^3 +... and x^2*A(x)^3 = 1x^2 + 6x^3 + 27x^4 + 110x^5 +...
MATHEMATICA
Table[Sum[Sum[Binomial[n, 2*i] * Binomial[n - 2*i, k - i] * (3*i)! / (i! * (2*i + 1)!), {i, 0, k}], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 10 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 23 2003
STATUS
approved