login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Antidiagonal sums of table A088925, which lists coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.
3

%I #10 Jun 30 2021 17:56:16

%S 1,2,5,14,43,142,496,1808,6807,26270,103357,412942,1670572,6828824,

%T 28159880,116997296,489271039,2057800158,8698624303,36936288650,

%U 157474552403,673830974654,2892864930292,12457038200008,53789813903620

%N Antidiagonal sums of table A088925, which lists coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.

%H Michael De Vlieger, <a href="/A088927/b088927.txt">Table of n, a(n) for n = 0..300</a>

%H Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021.

%F a(n) = sum(k=0, n, sum(i=0, k, C(n, 2i)*C(n-2i, k-i)*A001764(i) )), where A001764(i)=(3i)!/[i!(2i+1)! ] (from Michael Somos).

%F G.f. satisfies A(x) = 1/(1-2x) + x^2*A(x)^3.

%F a(n) ~ (2 + 3*sqrt(3)/2)^(n + 3/2) / (3^(7/4) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Oct 10 2020

%e A(x) = 1/(1-2x) + x^2*A(x)^3 since 1/(1-2x) = 1 + 2x + 4x^2 + 8x^3 +... and x^2*A(x)^3 = 1x^2 + 6x^3 + 27x^4 + 110x^5 +...

%t Table[Sum[Sum[Binomial[n, 2*i] * Binomial[n - 2*i, k - i] * (3*i)! / (i! * (2*i + 1)!), {i, 0, k}], {k, 0, n}], {n, 0, 25}] (* _Vaclav Kotesovec_, Oct 10 2020 *)

%Y Cf. A088925 (table), A088926 (diagonal), A001764.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 23 2003