login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110485
n^2 followed by n followed by n^4 followed by n^3.
1
1, 1, 1, 1, 4, 2, 16, 8, 9, 3, 81, 27, 16, 4, 256, 64, 25, 5, 625, 125, 36, 6, 1296, 216, 49, 7, 2401, 343, 64, 8, 4096, 512, 81, 9, 6561, 729, 100, 10, 10000, 1000, 121, 11, 14641, 1331, 144, 12, 20736, 1728, 169, 13, 28561, 2197, 196, 14, 38416, 2744, 225, 15
OFFSET
1,5
FORMULA
a(n) = (2*n+3-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))*(n^3+7*n^2+19*n+113-(n^3-n^2+19*n-15)*(-1)^n-(n^3+7*n^2-13*n-111)*(-1)^((2*n+5-(-1)^n)/4)-(n^3-n^2-13*n+17)*(-1)^((2*n+7+(-1)^n)/4))/2048. - Luce ETIENNE, Sep 01 2016
From Chai Wah Wu, Jan 11 2020: (Start)
a(n) = 5*a(n-4) - 10*a(n-8) + 10*a(n-12) - 5*a(n-16) + a(n-20) for n > 20.
G.f.: x*(x^15 - x^14 + x^13 - x^12 + 3*x^11 - 11*x^10 - 3*x^9 + x^8 - 3*x^7 - 11*x^6 + 3*x^5 + x^4 - x^3 - x^2 - x - 1)/((x - 1)^5*(x + 1)^5*(x^2 + 1)^5). (End)
MATHEMATICA
Flatten[Table[{n^2, n, n^4, n^3}, {n, 20}]] (* Harvey P. Dale, Oct 24 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Mohammad K. Azarian, Sep 14 2005
STATUS
approved